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Abstract:

Soil-structure interaction has significant effect on the dynamic responses of
structures. In this paper, a time domain implicit convolutional-PML for structure-
foundation soil system is developed for FEM analysis to absorb outgoing waves at the
artificial boundaries of numerical models. At first, convolutional PML for FE analysis
was developed, and symmetric coefficient matrices are obtained to be consistent with
most of FEM codes. Then, the convolutional PML was extended to cope with elasto-
plastic material. The high performances of the proposed procedures both for linear-
elastic soil-structure problem and for non-linear soil-structure problem with elasto-
plastic soil subjected to large seismic loading are demonstrated by numerical examples.
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1. Introduction:

Demand for a nonlinear analysis has increased by introduction of a performance design
of structures, a rapid progress of capability of computers, etc.. Nonlinear analysis
usually requires far more amount of computation than linear analysis. To reduce the
computation time in the nonlinear analysis, further development of computational
procedures and computer capability is essential. In this study, an efficient method for
the nonlinear analysis of the semi-infinite foundation was proposed. Several methods
have been used in the nonlinear analysis of semi-infinite foundation soil [1]. The first is
the extensive mesh models using a finite element method or a finite difference method
with approximate energy transmitting boundaries. The second is the substructure
method using, for example, finite element and time domain boundary element method.
In the former, the degrees of freedom of the models are often very large. The latter
method may be more efficient, but the nonlinearity must be restricted within the nearby
portion of structures modeled by finite elements. The third is FEM with PML or
convoltional PML. PML and convolutional-PML are proved to have efficient wave
absorbing capability for linear elasto-dynamic problem, and the nonlinearity must be
restricted within finite element domain. In the severe earthquakes, soil may become
nonlinear to a large extent so that the second and the third methods will be inadequate.In
this paper, convolutional-PML is extended to cope with non-linear problem, so that
nonlinear soil can be analyzed with a limited number of meshes without loss of
accuracy. This method is an extension of the method for a linear soil which maps an
infinite domain into a finite domain, as described in [2][3][4][5].

2. Methods:

2.1 Convolutional PML for nonlinear finite element analysis

we introduce complex coordinate stretching function in frequency domain analysis as:

, Where x. denotes i th coordinate, and x, the corresponding transformed coordinate, and A,
is given as:

T PP ()
o tio

, whereiis pure imaginary number, o circular frequency, andk,, o, and o, are non-negative

continuous functions, such that k,=1,and ¢,=1 at FEM-PML interface.

At first, equations for elastic wave are formulated in X, coordinate, and then transformed to
x, coordinate. Equations of motion are given as:
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,where pis density, x; is jth coordinate, u; is ith component of displacement, §(w) is Derac’s
Delta function, and g, is ith component of body force. In two-dimensional case, it is written
as:

172 §

(0,-0)(o, Hw)  (0,-a)(0,Hw) | 1 0x i o, Hiw " X, @
+p k1k2+k251 (0“2_0'1)—’_.6162 ko,(a,-0,)-6,0, 3(w)
(az'al)(a1+1®) (0( -0 )(OL o)
,where + indicates other index than j.
For strain,we get:
= 10u,
e e 5

R (5)
B F 6
81]—5(]J 0 o (6)
Weak form equations with weight function w, are given as:
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Applying inverse Fourier transform, the following equations in time domain are obtained:

_.I_
LPW {kkqu k,0,(@,0)*00, e }dv

(1.—(1.

,where * indicates convolutlonal integration.
Similarly ,from Eq. 5,we get:

(k f, +oea”*f)—8u .................................................................................................... (9)
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We introduce approximation for convolutional integration as:
t+At ' t '
F(t+ At) = L e RO 4+ e jo e IRt dt’

................................ (10)
= At{(1-0)e ™ fOHORtHAD | + e " F (t) = OALH(t + At) + e ““F (1)
,where At1is time increment and:
0< 0 <1, E =F(O)H(T-0)ALfE) ..o (11)
From Eq.8,we obtain:
2 k.o (a.-0)F .
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v v =1 o, -0,
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,where :
U ()= ™, (t)dt+A(1-0)i, (1),G; ()= ™ g dt+At(1-0)g,

" , S (13)
Zt) =] e " o, (tdt'+ At(1-O)o (1)
Similarly,from Eq.9 we obtain:
1 OAu. ce ™" . .

Af =f (t+At)—f (t) = R F(t)-E(t—At)..cooeeei.... 14

U vy Y Y kJ_Mjem(u() | (t=A) (14)
,where :
0= [e " B (U)dt+ (1= B)At, (1) v (15)

Substitutig Eq.15 into Eq.12,we obtain:
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Rearranging ,we obtain:
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,where:
g =k, +0Ato ,DI=gig) . oo (18)

If (8% / of, ) is symmetric with respect to (1]) and(kl) ,then coefficient matrices of
PML equations are symmetric. For linear elastic case,we obtain:

DI-C,
[ pw {kk,+0At(k,0,+k,0,)} i, (t+Adv+] Zwi i Oy (t+At)dy
Y X

; gg o
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k.o.(a,-0,)tc,0, G ,0,(a;-0,)tc,0, S
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;where C, is elasticity tensor.

If Newmark’s integration scheme is adopted,that is,if it is assumed :

A= Au i i An =T Aw L] 1o A e (20)
BAC ' BAt ' 2P BAt ' B 2p
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Then, we obtain :
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When Raylelgh’s damping is assumed,eqations of motion are modified as:
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,where A and B are Rayleigh’s constants. Then ,we obtain:
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2.2 Constitutive Equations

Elast-plastic material model is used in this paper. Let f be yielding function and g be
plastic potential .Then constitutive equations are given as:

do,=C,, (de,-de” }=C,,, (8,8, By ) A&, coovevveriiiiiiic (24)
,where do,, de,, and de’ are stress increment, strain increment and plastic strain

increment, respectively, and B, __1s given as:

N g S L - BT (25)
do,, " 0o, |\ 0O do; 0oy " do,

Pq
For yielding function, we use Mohr-Coulomb function such as:
f(1,.J,.J, )Z%{3(1—sin¢)sin9+\/§(3+sin¢)cose} \/Z—Ilsin¢—3ccos¢20 .................... (26)

,where I, is the first scalar invariant of stress, J,,J, are the second and the third scalar

invariants of stress deviator, respectively, @1is friction angle ,c is cohesive force and 01is
given as:

92%005'1 (-3v3/2x1,/377) (0SO<TE/3) coeeeeeee e, 27)
For plastic potential ,Drucker Praeger function is used:
2(1,0,)=T,-00L (830) ittt (28)

For plane strain state, ais given as:

o= tany / O L 2aN Y (29)

,where v is dilatational angle.

3. Numerical example

3.1 One-dimensional model

We consider one dimensional rod shown in Figure 1.
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Figure (1): One-dimensional Model

NN




Proceedings of the 8" ICCAE-8 Conference, 25-27 May, 2010 |

The stress-strain relationship is assumed to be elastoplastic.
Parameters are assumed as(all non-dimensional values): ¢ =20, =y =1.5,Lame’s
constants=12.5,0,=(x / L))oy x> 6,=(X/ Lp)0yuxs  K=1HX/Lp)Kyaxr  Opax=1> Oyax =10, an
d «,,.,=10, where origin of x is set at PML-FEM interface. We impose displacement at the
left end of the rod. The displacement is time-harmonic with amplitude 30./7,. Mesh length is
1, L=100, L,=20, ,p=1, Time histories at x=0 are shown in Figure 2 and Figure 3 along

with those obtained with viscous dashpots set at right end. ‘Reference’ in the figures
indicates results of very long rod .where reflected wave cannnot come back within time 60.
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Figure (2):Velocity response
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Figure (3):Strain response



Proceedings of the 8" ICCAE-8 Conference, 25-27 May, 2010 |

Reflected wave is much smaller with PML than with viscous dashpots in nonlinear case.

3.2 Two-dimensional model

Simple soil-structure interaction model is used as shown inFig.4. Rigid building with non-
dimensional height 4 and width 2 is placed on soil. Soil is of two layer. Top layer is elasto-
plastic with the same material properties as one-dimensional model, and thickness is 8(non-
dimensional-length). Bottom layer is elastic and of the same density and Lame’s parameter
with one dimensional model ,and thickness is 20. Incident wave of Ricker’s Wavelet with
amplitude 50 is applied at the depth of 20. Larger soil model has width 18,while smaller soil
model width 10. PML has thickness 5. PML parameters are also the same as one dimensional
model. The results of 4 kindes of models are compared: first with larger soil and linear PML,
second with smaller soil and linear PML,third with larger soil and non-linear PML,and last
with smaller soil and non-linear PML. Responses at the top of building ,those at depth 8 and
16 are shown in Fig,5 -8.

Nonlinear domain

PML

Figure (4):Soil-structure interaction Model

There are discrepancies between the results of larger and smaller model with linear PML,
while results of larger and smaller models with non-linear PML coincide well. It indicate that
we can use smaller soil domain when we use non-linear PMLand save computational time.
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Figure (5):Smaller model with linear PML
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Figure (6):Larger er model with linear PML
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Figure (7):Smaller model with non-linear PML
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Figure (8):Larger model with non-linear PML
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4.Conclusions:

Efficient displacement based convolutional PML procedures have been developed for
application to non-linear dynamic response analyses of semi-infinite soil-structure
interaction problems in time domain. It is demonstrated by numerical examples that
the accuracy of the developed procedures is significantly better than that of viscous
boundaries, and conventional linear PML.
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