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Abstract 
 
This paper presents a design optimization of a concrete beam subjected to blast loading due to 
nuclear explosion. It focuses on sizing optimization problem of a concrete beam having elastic 
foundation and fixed ends. In the formulation of the optimization problem, the objective function 
is to minimize the maximum existing displacement. The design variables of the optimization 
problem are the depths of the concrete beam. The constraints are the concrete beam mass, the 
derivative of the depth and the plastic strain. A MATLAB code has been developed to obtain the 
pressure time history. This code is linked to the finite element software ANSYS to determine the 
displacement time history , strains, stresses and the best cross section shape of the concrete 
beam.  
 
Keywords: Shape Optimization, Blast loading, Nuclear Explosion and Concrete Beam 
 
1. Introduction 
 
Few papers, available in literature, have focused on blast mitigation for concrete and steel 
sections. Dharaneepathy and Sudhesh [1] investigated the stiffener patterns on a square plate 
subjected  to blast loads modeled using Friedlander‟s exponential function. Xue and Hutchinson 
[2] and Fleck and Deshpande [3] compared blast resistance of solid versus sandwich panels 
which were assumed to be ductile to withstand deformation caused by impulsive blast loads. 
Yen, et al [4] presented an experimentally validated dynamic analysis procedure utilizing LS-
DYNA and the ConWep  The numerical results indicate that significant reduction in the 
maximum stress amplitude propagating within the protected components can be achieved by 
suitable selection of honeycomb material. Liang et al [5] investigated the optimum design of 
steel panels under blast loading by using a combined algorithm of the feasible direction method 
(FDM) and the Backtrack Program Method (BPM). This work ignores the effect of nonlinearity 
and deals with the blast loads as static loads. Main and Gazonas [6] studied the effect of an air 
blast on uniaxial crushing of cellular sandwich plates. Initial numerical results show that the 
capacity of the sandwich plates of shock mitigation can be improved by varying mass fractions 
of the front and back face sheets. Further, the authors investigate variation in geometry and  
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shock mitigation capacity. This leads to an optimization formulation to maximize mass 
distribution of front sheet while minimizing back-face acceleration. 
From the literature, it is clear that no application in optimizing shape of concrete beams is 
studied to resist blast loads. Therefore, an approach and methodology to optimize the shape of 
concrete beam to withstand blast loading due to nuclear explosion is presented in the current 
paper. Here, difficulties are also treated in the optimization problem. These difficulties are: i) the 
nature of blast loading ii) transient dynamic response iii) non-differentiable, nonconvex and 
computationally expensive functions iv) the nonlinearities are. pressure time load, deformations 
and plasticity. The transient analysis generally requires more computer resources. Some 
preliminary work should be done to understand how nonlinearities affect the structure's response 
by carrying a static analysis first.Here, a MATLAB computer program has been developed to 
implement the nuclear explosion.In the shape design optimization process, two different 
optimization methods (i.e. zero order method and first order method) are used to find the 
optimum shape of a concrete beam.  
 
2.Pressure loads of nuclear explosion  
 
The effects of an explosion can be distinguished in three ranges: i) contact detonation ii) near 
zone and iii) far zone of the detonation. The size of all these zones depends on many parameters, 
the most important one is the quantity of the explosive charge. Additional effective parameters 
are given in curves for the description of the different air blast using a rich body of experimental 
data see, Kingery [7] in 1984. The parameters are presented in double logarithmic diagrams with 
the scaled distance (Z), and are also available as polynomial equations. The pressure at a known 
point can be described by the modified Friedlander equation from Baker [8] and depends on the 
time of the arrival of the pressure wave (t = t0

 

-ta).The other effects of nuclear explosions as 
thermal, electromagnetic pulse and radiation are disregarded. The peak over-pressure can be 
calculated using equation (1). This equation is valid for weapon yield (1kt or 1 Mt). Using 
scaling laws,the pressure can be determined for other yields. All parameters of the pressure time 
curve are normally written in terms of scaled laws utilizing equation (2). 

 
 (1) 

 

    ,          ,        (2) 
 
Where (W) is the weapon yield and (R)is the distance between the center of the charge and the 
object. The pressure attains its maximum very fast (extremely in short time called arrival time 
(ta) of the shock wave to the point under consideration). Then, the pressure starts decreasing 
until it reaches the reference pressure (P0
The time of arrival (t

) as shown in figure 1. 
a) depends on the weapon yield and the distance from the point of burst. 

The time of arrival can be calculated using: 

 
(3) 

The positive phase duration (td) is the time for reaching the reference pressure. After that the 
pressure drops below the reference pressure until the maximum negative pressure (Pmin) is 
reached. 
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Figure.1 Field pressure- time history (TM 5-855-1, 1986[9]) 

The negative phase duration is denoted as (tn). The over-pressure impulse is the integral of the 
overpressure curve over the positive phase (td) and this can be computed using: 

 

(4) 

The peak value of the dynamic pressure (Pds) as a function of peak pressure is: 

 

(5) 

In the current study, A MATLAB code has been developed to simulate the nuclear explosion by 
calculating the load time history as shown in figure 2.This program contains yield of the weapon 
in kt of TNT, type of blast (surface or air)and charge location. 
 

 
 

Figure 2: Pressure time history for 80 kt TNT at 800 m from MATLAB program 

MATLAB calculations 
Explosive: TNT 
Quantity: 80Kt 
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3 Theoretical Aspects of Design Optimization 
 
Let us mark O a family of admissible domains Ω ∈ Rn

If {Ωn⊂O}, Ω ∈Ō, then the symbol Ω

. supposing that O is contained in some 
larger family Ō. With any Ω ∈O a Hilbert space V (Ω) of functions is associated supposing that a 
convergence of domains in Ō and of functions in V (Ω) is defined.  

n→ Ω, as n → ∞ is used for the convergence of domains. 
By the symbol un → u, as n → ∞ the convergence of function un∈ V (Ω n

(P)  u :  Ω ∈ O → u(Ω) ∈  V (Ω)  

) is detonated to the 
function u∈ Ω, where Ω n, Ω ∈Ō.. 

(6) 
 

Let be a mapping which associates with any domain Ω ∈ O a solution u(Ω) of a state problem 
(given by equations or inequalities in the domain ), and let G := {( Ω, u(Ω)) : Ω ∈ O }.  
Finally, let J : G → R be an objective (cost) function. The abstract optimal shape design problem 
is then stated as follows 

(P)                   (7) 
 

The exact solution of the problem is only in exceptional cases, so it is needed to approximate the 
problem (P), see [1], for example: Let h > 0 be a parameter of discretization tending to zero. In 
practice, any domain Oh is determined by finite number of parameters, defining its boundary. 
With any Oh a finite dimensional space Vh(Ωh) ⊂V (Ωh) of functions defined on h is associated. 
The convergences are defined in the same way as in the continuous case.  

 (8) 
 

Let be a mapping which associates with the domain (h), the solution Uh(h) of the approximated 
state problem, and let Gh := {( Ω h, uh(Ω h)) : Ω h∈Oh
 

} be a graph of this mapping.  
The discrete optimal shape design problem can be stated as follows: 
 

(Ph)                   (9) 

Such problems need more computational time and requirements because of the evaluation of the 
cost functional or its gradient. It is needed to solve the state problem first, and another 
complication may bring the fact that the cost function is not necessarily convex and continuously 
differentiable. Moreover, the optimal solution may not be unique or exists. This is the reason 
why the detailed mathematical analysis of the shape design optimization problem is important. 
 
4. Design Optimization in ANSYS 
 
The optimization routine termed OPT is an integral part of the ANSYS program that can be 
employed to determine the best solution. ANSYS also provides the user with a Parametric 
Design Language (APDL) that can be used to define design variables, objective function and 
constraint conditions. The ANSYS program offers two optimization methods to accommodate a 
wide range of optimization problems. These methods are the advanced zero–order method (Sub-
problem approximation method) and the first order method. For both of these methods, the 
program performs a series of analysis–evaluation–modification cycles. That is, an analysis of the 
initial design is performed, the results are evaluated against specified design criteria, and the 
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design is modified as necessary. This process is repeated until all specified criteria are met. 
ANSYS also provides helpful tools that can be used to obtain a good initial guess.  
 
4.1. Advanced zero order method 
 
ANSYS uses optimization methods. These techniques are described in this section. In the 
advanced zero order method, the program uses only the values of objective function  and 
constraints  during the optimization (minimization) process. There are two concepts which 
play a key role in this method: the use of approximations for  and , and the conversion 
of the constrained to unconstrained optimization problem using the penalty approach. The 
approximation is achieved by least square fitting between the data points. This results in curves 
(or surfaces) that are created in each optimization loop. The program allows the user to control 
curve fitting for the approximation. The user can request a linear fit, quadratic fit or quadratic 
plus cross terms fit. 
 Using the advanced zero order method, the optimization procedure within ANSYS can be 
described in the following steps:  
Step 1. .ox Define the design variables (design set) and initiate their values  These initial values 
can be either user defined or can be obtained using one of the program tools as described later. 
Step 2. Model the structural system (preprocessing stage). 
Step 3

oF
. Solve the structural system (solution stage) and obtain the values of the constraints (post–

processing stage) and objective function . 
Step 4 cu

sG. Evaluate the feasibility of the design set between the current  and the previous 1cu−
sG  

using the feasibility tolerance G
s
Tol,ε  according to 

 (10) 
Where G

s
Tol,ε  is either user–defined or the default is 

 (11) 
Where LU and ss GG  are the upper and lower bounds of the constraint sG . 
Step 5. Check the convergence criteria at the end of each loop. The problem is said to be 
converged if the current , previous , or the best  and any of the following 
conditions are satisfied.  
The change in the value F from bestF  to the current cuF  is less than a certain 
tolerance FTol,ε This can be formulated as 

 (12) 
Where the value of FTol,ε  is either user–defined or by default: 

 (13) 
The change in the value from cuF  to 1cu−F  is less than FTol,ε , therefore 

 (14) 
The changes in all design variables from cux to 1cu−x , are less than x

i
Tol,ε  as 

 (15) 
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Where x
i
Tol,ε  is user defined or the default: 

 (16) 

Where U
ix  and L

ix  are user–defined upper and lower bounds of ix . 

The changes in all design variables from cux  to bestx  are less than their respective 
tolerances x

i
Tol,ε . 

 (17) 
Step 6

i. Any of the convergence criteria is reached. 

. Check of termination conditions. The termination occurs when any of the following 
criteria is true: 

ii. The prescribed maximum number of loops is performed.  
iii. The number of consecutive infeasible solutions has reached the specified limit. 

Step 7
x̂

. If the termination does not occur, then the software formulates an approximate sub–
problem to determine best design vector ( ) by minimization of the objective function, based on 
current information. Using a series of response surfaces as a starting point for the next loop. This 
algorithm is called Sequential Unconstrained Minimization Technique SUMT (see Fiacoo and 
McCormick, 1968 [12]). The minimum of each response surface is found by a series of searches 
in design space, starting at the previous best design set. The search consists of minimization in 
the following directions: 

i. Directions along each xi

ii. Directions tangent to each 
, 

)( xsG  and 
iii. Direction of steepest descent of )( xF . 

This sequence continues until the change in the minimum of the response surface is less than a 
small tolerance that is described in Step 5. 
Step 8. Calculate a new design vector  based on a combination of best design to date 

 with the best design ( x̂ ) determined from last minimization. The new design variables are 
evaluated using the formula: 

 

 (18) 
Whereη  is constant and is defined as: 

cur01 i
o rCC. −−=η  (19) 

Where oC  is a fraction of the design variable in the next loop related to the current loop and it 
takes its value form: 

900 o .C << , (20) 
The random contribution fraction rC  is determined by 

or 010 C.C −<<  (21) 
And the randomly generated number cu

ir  applied to each cu
ix  is  

5050 cu .r. i <<−  (22) 
Step 9
 

. Repeat Steps 2–8 until the termination condition is achieved.  
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4.2. First order method 
 
Using the same procedure illustrated for the advanced zero order method, the optimization 
procedure using the first order method can be described except:  
1. In the first order method, the program uses the gradients ix xF ∂∂ )( and ix xGs ∂∂ )( . For 

each iteration, the gradient calculations are performed in order to determine a search 
direction, and a line search strategy is adopted to minimize the unconstrained problem. Thus, 
each iteration is composed of a number of sub–iterations that include search direction and 
gradient computations.  

2. For the convergence checking, the program continues until either convergence is achieved or 
termination occurs. The problem is said to be converged if one of the following conditions is 
satisfied: 
• The change in the value F from bestF  to the current cuF  is less than a certain tolerance 

F,Tolε  as described in the advanced zero order method.  

• The change in the value from cuF  to 1cu−F  is less than F,Tolε  as illustrated in the 
advanced zero order method. 

5. Sizing Optimization of a Beam 
 
5.1 Problems Statement 

In this section the mathematical model describing bending of an elastic beam with 
varying thickness is described. The concrete beam is made of homogeneous isotropic material 
with constant Young’s modulus of elasticity E. Body of the beam occupies the domain (D) 

 

 
(23) 

 
The blast load acts only in the y-axis direction. The concrete beam meets all requirements of 
Euler-Bernoulli hypothesis. The beam is supported along its entire length by a continuous elastic 
foundation with a stiffness function Q(x). Using Kantoroviˇc’s method the original displacement 
vector (ux, uy, uz) is replace by its approximation (−ὠ(x)y, w(x), 0). The classical formulation of 
the beam bending problem in continuous case can be stated as follows: 
Find a deflection w C (4)(Ω)∩ C(1)( )such that: 
 

 (24) 
 
where f(x) is a continuous function in (0, L) and represents the intensity of the given external 
load dependent only on the coordinate x. Young’s modulus of elasticity of material E(x) and the 
moment of inertia of the cross section of the beam J(x) are continuous functions whose 
derivatives of J(x) up to the second order are continuous in the interval (0, L). Stiffness function 
of the elastic foundation (subsoil) of the beam Q(x) is a continuous function in (0, L). The 
bending moment M and the shearing force T corresponding to the deflection w = w(x) are defined 
as follows: 

 (25) 
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 (26) 
 

Some possible variants of given boundary conditions are introduced. Four types of classical 
boundary conditions may be described in points x = (0, L) 
 

 (27) 

 
 

(28) 

The cross section of the beam is rectangular having breadth b(x) and thickness t(x) the beam is 
divided into ten elements. 

 
The state problem for fixed t(x) and Q(x) is obtained using: 
 

 (29) 
 
 
Where J(x) = 1/12 t3

 

(x)b(x)is the moment of inertia and K(x) = 1/12b(x)E(x) is a continuous 
function in (0, L). For simplicity K(x) equals constant value K; i.e. the beam is clamped at both 
ends. The definition of the space functions is: 

 (30) 
 
Generally  (Ω) ⊆V ⊆H2(Ω) holds. The following bilinear form and linear function can be 
obtained from the classical formulation using suitable Green’s formula. 

 
(31) 

 
5.2. Classical continuous formulation 
 
For the optimization purposes, it is needed to formulate the set of admissible design variables. 
The design variables appear in coefficients of the corresponding differential operator, while the 
domain of integration remains fixed.  
 
Let us define the 

 
(32) 

The thickness is represented by functions which are continuous and uniformly bounded. The set 
of admissible thickness also preserves the beam volume. The condition |t\(x)| ≤  causes that 
t(x) is uniformly Lipschitz continuous. The uniform Lipschitz constraint appearing in the 
definition of  prevents thickness oscillations and is sufficient for ad to be compact. The 
second set ad contains conditions for the second design variable Q where 
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(33) 

Parameters t , ,  ,  ,  , ,  and  are chosen in such a way that Uad

 

 ≠0 ;. Now, let 
us define the design variable p(x) 

 (34) 
 
It means that the optimal thickness distribution t(x) and the optimal distribution of the foundation 
stiffness Q(x) shall be found. By the cost functional a “quality” of the design variable is 
measured using the following function 

 
(35) 

The function has a quite practical meaning; J represents “stiffness” of the beam. For another cost 
function see [7], [8]. The corresponding sizing optimization problem can be then stated as 
follows: 

(P1)                   (36) 

Where w(p(x), x) is a solution of the given state problem (P1) for corresponding p(x)= 
(t(x),Q(x)). It can be proved that the optimization problem (P1
 

) has at least one solution, see [9]. 

5.3. Approximation of the optimization problem and discrete formulation 
 
The exact solution of problem (P1) is usually hardly available. Discrete formulation of the 
problem is the objective of this section. Let Dn(h) is an equidistant division of [0, L] with step 
h>0 

 
According to ANSYS possibilities the approximation of Uadis chosen by a piecewise linear 
respective piecewise constant functions on the same division Dn(h). First, sets  and  are 
defined as: 

 (37) 

 (38) 
 The sets  ,   and Uad can be approximated as follows: 

 (39) 
Creation of a parametric model which will be directly implemented in finite element software 
ANSYS will be the next step in our analysis. From the approximation of the sizing optimization 
problem listed above now, to represent it in terms of real scalar parameters. The design variables 
th and Qh

 

 with (n(h) + 1) are associated respective (n(h))- dimensional vectors. Components of 
these vectors can be obtained as function values at nodal points Dn(h) 

 
(40) 

 
(41) 
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Now the sets  and  can be stated as follows: 
 

 

(42) 

  
where the relations hold for i = 0, . . . , n(h) respective i = 1, . . . , n(h) in the case of and 

 for i = 0, . . . , n(h) − 1 respective i = 1, . . . , n(h) − 1 in the case of . Let us define 

 
Using the finite element method, the state problem takes form of the system of linear algebraic 
equations with positive definite stiffness matrix. It means that the state problem reduces for 
every fixed ph = (th,Qh) to finding coefficients wi from the system K(Ph)w(ph)= F. Now, the 
algebraic form of the cost function and the discrete form of the problem (P1) are presented. 

 
 

(43) 

(P1,h)                   

 

(44) 

Wherew(Ph) is the solution of the state problem K(ph) w(ph) = F for corresponding ph = (th, Qh
 

).  

6. Solution process 
 
In the finite element problem the concrete material properties and geometry properties are given 
in Table .1. Key points, element type and Young’s modulus of elasticity are defined in the 
analysis file. One set of real constants as AREA1, IZ1, AREA2, IZ2 for each element is defined.  
 

Table 1: Input data of the state problem 
 

Concrete material 
properties 

Geometric 
properties 

Loading 

E= 3E10Pa 
ʋ = 0.2 

I = 0.009365 m
H = 0.762m 

4 

B = 0.254m 
L = 6.096m 

F=200kPa 
Td=650msec 

 
For the concrete beam of length (L) having fixed ends with blast load function P(t) . ANSYS 
element BEAM54 is chosen to model the beam element. Element (BEAM54) allows tapered 
cross section and constant stiffness of the foundation along the element. The thickness may vary 
between nodes.BEAM54 is conforming element for the current problem and corresponds to the 
choice of the space Vh. In this case the supports, load and material properties are symmetrical 
ones. The number of variables is 6 due to symmetry. Each element (i) has an initial thickness (Ti)  
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ParameterT1 represents the thickness t1 in the first node and along the first element. In the same 
way the remaining parameters T2, T3, . . . , T6 are defined. For each element (i) parameters 
express the constraints of the derivative and parameters of the type (T2/T1)3

The solution phase begins by the definition of displacement boundary conditions and blast load. 
Half symmetry boundary conditions have been prescribed at node number 6.The optimization 
file contains commands which specify the parameters as the design variables, state variables , the 
objective function and the maximum and minimum values of these variables are defined as 
shown in Table 2. 

 are defined to 
prevent the computational error caused by the element BEAM54 assumption and restriction. 

 
Table.2. Typical values of input parameters used in the input file Parameter Value 

 
Design set Parameter Min Max Tolerance 

Design variable Thickness of beam 0.1905m 0.381m 0.01 

State variable 

Volume of beam 1.78 m 1.9 m3 0.1 3 

Derivative of the thickness -1 1 0.01 

Plastic strain limit 0.15 

Objective Displacement Minimum 0.00001 

Optimization method 1st order method, Sub-problem approximation 
 
Remaining parameters are set in the same way. The convergence tolerance was set to 10−5. The 
value of the cost function J for the initial constant thickness ti
The first order method was run with variable input parameters. The percent step size was set to 
100 each time. The convergence tolerance is set to 10

 = 0.25, Ɏi. In Tab.3 and Tab. 4. 

−5 and with the percent forward difference 
∆D = 0.1 .The best minimum displacement value 11.019 mm is reached. In the second run ∆D = 
0.2 is set. The run was terminated after 3 loops because the convergence conditions were 
satisfied. The convergence tolerance was changed to 10−6

 

 but better solution than in the first run 
was not reached. The same situation occurred when the forward difference is changed to 0.3 or 
0.4, see Table. 3. 

Table 3: First Order Method – Results 
 

Trial 
number 

Input data Minimum 
displacement(mm) Tolerance ∆D Number of iter 

1 10 0.2 −5 2 16.023 

2 10 0.2 −6 125 11.959 

3 10 0.1 −5 87 11.019 

4 10 0.3 −6 71 14.202 

5 10 0.4 −6 127 13.203 
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The sub problem approximation method was run each time with the tolerance parameter set to 
10−5

 

. After several runs of this method, it was clear that the values of input parameters are very 
important according to the final result. Especially the maximum number of iterations (MNI) and 
maximum number of infeasible sets (MNIS). When running the method with MNI=140 and 
MNIS=60. The best result with minimum displacement value 15.816 mm is reached after every 
possible combination of other input parameters. The process was always terminated because of 
the maximum number of iterations was reached. Value 15.816 is much worse than the best result 
obtained by the first order method. After some experiments MNI=300 and MNIS=300 are set. 
The method reached its best sets somewhere between 200 and 320 iterations, see Table 4.  

Table 4: Sub problem Approximation Method – Results 
 

Trial 
number 

Input data Minimum 
displacement(mm) Tol.  OBJ approx. CON app. Weights Iter. 

1 10 Linear −5 Linear Compound 300 10.563 
2 10 Quadratic −5 Quadratic Compound 300 11.312 
3 10 Quadratic −5 Quadratic Feasibility 265 10.462 
4 10 Quadratic −5 Quadratic Objective 254 11.389 
5 10 Quadratic −5 Quadratic Distance 300 10.494 

 
By setting of these values better results with this method are obtained than with the first order 
method. From Tab. 2 and Tab. 3, it can be seen that the best results obtained by the first order 
method and the sub problem approximation method can be compared in figure 3 and in figure 4. 
The best result for the first order method is presented on the left figure.  
 

  

   
 

Figure 3: The optimal thickness 
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Figure 4: Graphs of functional values for both methods 
 

7. Conclusions 
 
The main aim of this paper is the presentation of the procedure suitable for shape design 
optimization of concrete beam subjected to blast loads. This problem has wide usage in technical 
and engineering applications, including fortifications and bridges. Results obtained by two 
different optimization methods are summarized into tables and analyzed. The first order method, 
compared to the sub problem approximation method, usually demands more computations and is 
more accurate. The first order method proceeds systematically to the optimum. On the other 
hand, the sub problem approximation method is generally much faster. It is clear that both 
methods are dependent on the choice of their parameters and tolerances.  
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