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Abstract: 

In underwater applications, space vehicles, and aircrafts, the weight becomes an 

important factor. Additionally, the design of composites structures greatly 

depends on the number of layers and the fiber orientation angle. Therefore, this 

work presents the optimization of sandwich composite pressure hull in order to 

minimize (weight and drag force) and maximize the buckling load capacity 

using ANSYS Parametric Design Language (APDL). Tsai-Wu and maximum 

stress failure criteria were incorporated for predicting the first-ply failure. The 

major and minor radius of the pressure hull, the ring and long beams dimensions, 

the fiber orientation angle and layer thickness are taken as design variables. The 

results illustrated that, core thickness (Tcore) has a great effect to resist the shell 

buckling. While, has a little effect on both Tsai-Wu and maximum stress 

failure index. 

Keywords: Multi-objective optimization; Buckling; drag force; pressure hull; Tsai-Wu. 
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1. Introduction 
The pressure hulls are one of the most main structures of the submarine which provide high 

load capacity for electronic systems and buoyancy [1]. The optimization and buckling behavior 

have been attracted some recent attention [1-17]. Additionally, Zhang et al. [18], investigated 

the egg-shaped pressure hulls to improve the low buckling resistance, the difficult interior 

arrangement and the poor hydrodynamics of the spherical pressure hull. Vosoughi et al. [19], 

investigated the optimum stacking sequences of laminated composite plate to maximize the 

buckling load by achieving the optimum fibers orientations. Significant research work had been 

presented so far in this field. Among them, Mian et al. [20], presented the design optimization 

procedure for a composite pressure vessel, considering both maximum stress and Tsai-Wu 

failure criteria. Pan et al. [21], studied the optimization of composite cylinder due to hydrostatic 

pressure. The ply orientation and thickness are studied. Furthermore, Fathallah and Helal [22], 

optimized deep cross elliptical  pressure hull taking into consideration both buckling and 

failure criteria. Imran et al. [23], optimized a composite pressure hull to minimize the buoyancy 

factor. Lund [24], Optimized a laminated composite structures using failure criteria. Moreover, 

Fathallah et al. [25], investigated the optimization of elliptical composite pressure hull for 

minimizing buoyancy factor. In this wok, a sandwich composite pressure hull is proposed. The 

view of the model is shown in Fig. 1. The multi-objective optimization methodology for the 

pressure hull is presented. The optimization is established for maximizing the buckling load 

capacity and minimizing the drag force and (weight/displacement) ratio, of the pressure hull. 
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Fig. 1 Parameterization of the submersible pressure hulls geometry. 

 

1.1 Buckling in multilayer-sandwich composite pressure hull 

In this work, a scalar multiple � of the design load, the so-called buckling load strength factor, is 

introduced to identify pre-buckling of the multilayer sandwich submersible pressure hulls and 

defined as [1]: 

S

act

P
P

� �  (1) 

Where: Pact is the actual load and Ps is the structural critical buckling strength. The buckling will 

occur when 1� �  and (Ps) less than (Pact). The critical value of the pressure crP  that will cause 

buckling is determined using the following equations [22, 26]: 
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Where: L, R, m and n are the length, the radius, the number of buckle half waves in the axial 

direction and the number of buckle waves in the circumferential direction, respectively. The 

coefficients C, A, B and D are defined as follows: 
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 (3) 

Where: Aij, Bij and Dij are the stiffness components including extensional stiffness, coupling 

stiffness and bending stiffness coefficient matrix, respectively. The elements of the stiffness 

matrices are: 
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Where: n is the number of different plies in the stacking sequence and 
1

,k kZ Z �
are the upper 

and lower ( )Z coordinate of the thk ply layer as shown in Fig. 2. Qij  are the elements of the 

transformed reduced stiffness matrix � �Q and are defined as in [27]: The optimization can be 

achieved to obtain the highest buckling strength factor. The number of plies can be varied as 

well as their orientation. Since the fiber orientation has no influence on the mass function. 

 

 

a) A composite laminate subjected to forces and moments. b) Enlarged view of laminate cross-section 

Fig. 2 Laminated composite shell and coordinate locations of plies in a laminate. 

The successful design requires an efficient and safe use of materials. Therefore, theories are 

needed to develop and compare the state of the stresses and the strains in the material [28]. In 
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this study both Tsai-Wu and maximum stress failure criteria were incorporated for predicting 

the first-ply failure. and are defined as in [1]. The von Mises yielding criteria is employed here 

to assess the capability of the core materials to withstand the yielding failure. 

1.2 Drag Estimation and power requirements 

The proper hydro-dynamic design is necessary to achieve the effective performance of the 

submarine. An improper shape can cause excessive noise, drag and instability. Drag is the 

hydro-dynamic force exerted on the hull body in a direction opposite to its velocity. The 

propulsive power requirement is proportional to the drag and times the velocity divided by the 

propulsive efficiency. The drag is consist of two components, the form drag (function of the 

shape and frontal area) and friction drag (function of the speed and wetted surface area) [29]. 

For drag estimation, the following formula has been used [30]: 

 
21

2
VD V C S��  (5) 

Where: D denote the submarine drag in Newton (N), � denote the density of the fluid in 

kg/m
3
, V denote the velocity in m/s, S denote the wetted surface area of the vehicle in m

2
 and 

CV denote the coefficient of viscous resistance for the smooth hull. There are three methods 

used to compute the coefficient of viscous resistance (CV) namely; Virginia Tech, MIT and G&J 

method [31]. According to G&J method, the coefficient of the viscous resistance, CV, can be 

calculated as [32]: 
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In MIT method, CV defined as: 
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Where: d denote the maximum body diameter in meters, L denote the total length in meters, CF 

denote the bare hull skin friction drag coefficient and defined as a function of Reynolds number 

(Rn) as [33]: 
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Where: CP denote the prismatic coefficient and can be defined as: 
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(9) 

Where: Vd denote the displacement volume of the submarine in m
3
, Rn denote the Reynolds 

number and can be defined as:  

 n
VLR �
�

�  (10) 

Where: � is the density of the fluid in kg/m
3
, V is the velocity in m/s, L is the overall length of 

the submarine pressure hull in meters and μ is the dynamic viscosity of the fluid in kg/ (m.s). In 

this study, ( ,dV S ) will be calculated using volume and surface measurement function in 

ANSYS. 

2. Submarines pressure hulls materials and simulation  
The model constructed from Boron/Epoxy B(4)/5505 composites with the lay-up composed of 

sixteen plies (n = 16) having equal thicknesses (t1) and fiber orientation angle (� ) and one core 

layer with thickness (Tcore). Low density PVC foam is used for the core layer. The material 

properties and strength parameters of B(4)/5505 Boron/Epoxy and PVC foam are given in 

Table 1 [25, 34, 35]. Fig.3 illustrates the relationship between the collapse depth and buoyancy 

factor for a visual comparison of different structural materials. [36]. The sandwich structure is 

modeled using Shell 281 element. The Beam 189 element is used for ring and long beams [37, 

38].  

Table 1. Strengths of unidirectional composites and material properties of the sandwich components [34, 35, 

39, 40]. 

Material Material and strength properties 

B(4)/5505 Boron/Epoxy 

E11= 204GPa, E22= 18.5GPa, , E33= 18.5GPa, G12= 5.59GPa, G13= 
5.59GPa, υ12=0.23, Xt=1260MPa, Xc=2500Mpa, Yt=61MPa, 
Yc=202MPa,S=67 MPa, ρ= 2000 kg/m3 

H200 
E=250MPa, G=73MPa,υ=0.3, Xt=7.1MPa, Xc=5.4Mpa, Yt=7.1MPa, 

Yc=5.4MPa,S=3.5MPa, ρ= 200 kg/m3 
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Fig.3 Weight to displacement ratio Vs Collapse depth for stiffened cylinders. 

The boundary conditions applied here as in [1, 41]. The pressure hull is loaded by external 

pressure ( P gh�� ). Where � denotes the density of the sea water, g is the acceleration due to 

the gravity and h, represents the operating depth. Two failure criteria, Tsai-Wu and maximum 

stress are used to evaluate the failure of the pressure hull [25]. Fig. 4  shows the final layer 

stacking for the global model. 

 

a) Layer stacking 

Fig. 4 The composite pressure hull layer stacking. 

3. Structural design optimization  
Fig.5 shows the flow chart of the multi-objective optimization procedure. The optimization 

design is described as:  
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Objective function: F(X): Minimize (weight/displacement ratio (B.F) and drag force (DF)) 

and maximize (buckling capacity ( � )). 

Design constraints: 

� � 1 ......FS i i n� ���� � ��  �!�  (11) 

Where:�� represents the factor of safety and must be greater than one to avert the first-ply 

failure of the angle-ply laminated for each ith
 layer and equals to the inverse of the failure 

index for both Tsai-Wu and maximum stress failure criteria and (n) is the number of layers. 

1 0

y

"
"

� #  (12) 

Where:" and y" are the actual stress and yielding strength in the core layer, respectively. 

maxH H#
 

(13) 

Where: H, and Hmax
 
represent the operating depth and the maximum operating depth, 

respectively. 

Design variables: 

The composite pressure hull diameters are taken as: 

, min, max
L UD D Di i ii# # �

 
(14) 

Where: ��, ��
� and ��

�are the ith
 submersible pressure hull diameters and its upper and lower 

limits, respectively. 
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Fig.5 Flow chart layout of multi-objective optimization procedures 
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limits, respectively. For ply thicknesses: 

...,L U
it t t i n# # ��� �!����

 
(16) 

Where:��, ��,��represent the ith 
thickness for the lower and upper bounds of the individual ply 

thicknesses, respectively. 

L U
     ...,i i n� � �# # � ��� �!�  (17) 

Where: 	�, 	
, 	�represent the ith  
orientation angle of each layer and their lower and upper 

limits, respectively. 

4. Results and discussions 
 The results of Multi-objective optimization are summarized in Table 1. The drag force  is 

equals to 2.19925×10
12

 N, buckling strength factor (� ) equals 118, at (B.F) equals 0.47.The 

maximum magnitude of deflection value (δmax) equal to 2.18 mm. Fig. 6 illustrates the 

displacement distribution in X, Y and Z directions for the model. The maximum displacement 

occurs at the centroids regions of the composite pressure hull and occurs in vertical direction 

with value equals to 2.14 mm. The optimum configuration of the sandwich composite pressure 

hull can overcome all structural failures until operating depth (H) equals to 255 m.  

Table 2. Results of the optimal design of the sandwich composite deep pressure hull. 

FSTWSR_1 FSTWSR_2 FSTWSR_3 FSTWSR_4 FSTWSR_5 FSTWSR_6 FSTWSR_7 FSTWSR_8 

1.59 1.63 1.60 1.64 1.61 1.65 1.62 1.65 

FSTWSR_10 FSTWSR_11 FSTWSR_12 FSTWSR_13 FSTWSR_14 FSTWSR_15 FSTWSR_16 FSTWSR_17 

1.73 1.72 1.70 1.69 1.67 1.66 1.65 1.64 

FSMAXF_1 FSMAXF_2 FSMAXF_3 FSMAXF_4 FSMAXF_5 FSMAXF_6 FSMAXF_7 FSMAXF_8 

1.76 1.78 1.77 1.79 1.78 1.80 1.78 1.81 

FSMAXF_10 FSMAXF_11 FSMAXF_12 FSMAXF_13 FSMAXF_14 FSMAXF_15 FSMAXF_16 FSMAXF_17 

1.88 1.86 1.84 1.82 1.80 1.79 1.77 1.75 

Maximum 

deflection 

(δMAX) 

LAY9_SXMAX LAY9_SXMIN LAY9_SYMAX LAY9_SYMIN Dmax Dmin t1 

0.00218 

(m) 
158772(Pa) -28654 (Pa) 219556.6 (Pa) -69869 (Pa) 2.0838(m) 1.8842(m) 1.59(mm) 

Buckling 

strength 

factor (λ) 

Lpmb(m) Tcor (m) α 
Operating 

depth (H(m)) 

LAY9_von 

Mises (Pa) 

Drag Force 

(N) 
B.F 

118 2.80 0.091 55o 255.00 1636834.95 2.19925×1012 0.47 
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a) Displacement distribution (Ux) b) Displacement distribution (Uy) 

  

  

c) Displacement distribution (Uz) d) Displacement distribution (Umagnitude) 

 

Fig. 6 Displacement distribution (Ux,Uy, Uz and Umagnitude) in composite pressure hull. 
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a) Tsai-Wu failure distribution at Ply-1 b) Maximum stress failure distribution at Ply-1 

  

c) Tsai-Wu failure distribution at Ply-17 d) Maximum stress failure distribution at Ply-17 

 

e) von Mises stress distribution at core layer (Ply-9) 

Fig. 7 Tsai-Wu, maximum stress and von Mises distribution in composite pressure hull. 

Also, Table 2 illustrated that, material failure incorporating both Tsai-Wu and maximum stress 

failure criteria were considered together for predicting the first-ply failure. The minimum factor 

of safety (FSTWSR and FSMAXF) are occurring in the lower face at ply-1 due to maximum tensile 

stresses and equal 1.59 and 1.76, respectively. At upper face, the minimum values of FTWSR and 

FMAXF are occurring at ply-17 due to maximum compressive stresses with value equal to 1.64 

and 1.75, respectively. The optimized orientation fiber α equals to (55
o
) with Tcore of about 91 
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mm. Fig. 7 (a, b, c and d) shows the Tsai-Wu and maximum stress failure distribution at critical 

Plies (Ply-1 and pl-17). The maximum Tsai-Wu and maximum stress failure at ply-1 will be 

initiates first at the middle of the left and right sides of the composite pressure hull. For ply-17, 

the failure will be initiates first at the upper and lower regions of the composite pressure hull. 

Fig. 7 -e shows the von Mises stress distribution for core layer (Ply-9) and illustrated clearly 

that, the maximum von Mises stresses occurs at the regions between long and ring beams.  

4.1 Effect of fiber orientation on design variables and design constraints 

Fig. 8-(a and b) shows the effect of (α) on maximum deflection value (δMAX) and buckling 

strength factor (� ). It can be seen that, (δMAX) equals to 4.63 mm and occurs when α equals to 

0
o
. As (α) increases the maximum deflection value decreases and reaches to the minimum 

value when α equals to 90
o 

with value equals to 2.04 mm. Fig. 8-b shows the variations of 

buckling strength factor with fiber orientation α. It illustrates that, the minimum buckling 

strength factor value is equal to 16.5 and occurs when α equals to 0
 o

. After that, as (α) 

increases (� ) increases and reaches to maximum value when α equals to 60
o 
with value equals 

to 157.2. With increasing α, (� ) decreases again and reaches to 45 at α equals to 90
o
. 
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Fig. 8 The effect of fiber orientation (α) on the buckling strength factor and maximum deflection value (δMAX). 
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a) α on Tsai-Wu failure index (lower face) b) α on Tsai-Wu failure index (upper face) 
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c) α on maximum stress index (lower face) d) α on maximum stress index (upper face) 

 
Fig. 9 The effect of fiber orientation (α) on the Tsai-Wu and maximum stress failure index.

Fig. 9 presents the effect of (α) on Tsai-Wu and maximum stress failure index for both upper 

and lower faces of the sandwich composite pressure hull. The maximum failure indices for 

Tsai-Wu and maximum stress failures occur when α equals to 10
o
 at lower face with values 

equal to 1.7 and 1.29, respectively and the maximum occurs at (Ply-1) due to the high tensile 

stresses. With increasing α, the maximum failure indices for Tsai-Wu and maximum stress 

decrease and reach to the minimum values when α equals to 55
o
. After that, the maximum 

failure indices increase until α equals to 70
o 

with values equal to 0.76 and 0.69 for Tsai-Wu 

and maximum stress failures, respectively. The maximum failure indices for the lower face 

decrease until α equals to 90
o
 and reach to the minimum with values equal to 0.55 and 0.52 for 

Tsai-Wu and maximum stress failures, respectively. For the upper face, the minimum values of 

Tsai-Wu and maximum stress failure are equal to 0.52 and 0.5, respectively. 
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a) Tcore on Buckling strength factor b) Tcore on δMAX 

Fig. 10 The effect of core thickness (Tcore) on the buckling strength factor and maximum deflection value (δMAX). 
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a) Tcore on Tsai-Wu failure index (lower face) b) Tcore on maximum stress failure index (lower face) 
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c) Tcore on Tsai-Wu failure index (upper face) d) Tcore on maximum stress failure index (upper face) 

Fig. 11 The effect of core thickness (Tcore) on Tsai-Wu and maximum stress failure index. 

4.2 Effect of core thickness (Tcore) on design variables and design constraints 

Fig. 10 illustrates the effect of core thickness (Tcore) on buckling strength factor and maximum 

deflection value (δMAX). The figure shows that, as Tcore increases the buckling strength factor 

increases and δMAX decreases. The results emphasize that, Tcore has great effect on buckling 

strength factor. Fig. 11 presents the effect of Tcore on maximum Tsai-Wu and maximum stress 
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failure indices. It reveals that, increasing Tcore, decreasing the failure index and the core 

thickness has moderate effect on both Tsai-Wu and maximum stress failure index.  
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a) Lpmb on Tsai-Wu failure index ((lower face) b)   Lpmb on Tsai-Wu failure index (upper face) 
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c) Lpmb on maximum stress failure index (lower face) d)  Lpmb on maximum stress failure index (upper face) 

Fig. 12 Effect of (Lpmb) on Tsai-Wu and maximum stress failure index. 

5. Conclusions 
In this study the finite element simulation and optimization were presented for increasing 

the buckling load capacity, minimizing the drag force and the weight/displacement ratio using 

ANSYS (APDL). The following observations were made: 

• The pattern of optimum points is presented which is used in fabricating and designing 

the composite pressure hull under hydrostatic pressures. 

• At lower face sheet the failure will be initiate first at (ply-1), for upper face sheet the 

failure will be initiate at the upper most layer (ply-17).   

• The core thickness is important to resist the shell buckling. 
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• The fiber orientation angle (α) has a great effect on buckling strength factor, maximum 

deflection value, Tsai-Wu and maximum stress failure index of the sandwich 

composite pressure hull.  

• The results suggest that, in the design of composite pressure hull, both buckling and 

material failure should be considered.  
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