
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Comparison of gridded datasets for the simulation
of streamflow in Africa
To cite this article: Mostafa Tarek et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 974 012001

 

View the article online for updates and enhancements.

You may also like
Contrasting scaling relationships of
extreme precipitation and streamflow to
temperature across the United States
Mingxi Shen and Ting Fong May Chui

-

Machine learning assisted hybrid models
can improve streamflow simulation in
diverse catchments across the
conterminous US
Goutam Konapala, Shih-Chieh Kao, Scott
L Painter et al.

-

Late twentieth century rapid increase in
high Asian seasonal snow and glacier-
derived streamflow tracked by tree rings of
the upper Indus River basin
Feng Chen, Magdalena Opaa-Owczarek,
Adam Khan et al.

-

This content was downloaded from IP address 195.43.0.86 on 29/05/2023 at 09:33

https://doi.org/10.1088/1757-899X/974/1/012001
https://iopscience.iop.org/article/10.1088/2515-7620/ac40ef
https://iopscience.iop.org/article/10.1088/2515-7620/ac40ef
https://iopscience.iop.org/article/10.1088/2515-7620/ac40ef
https://iopscience.iop.org/article/10.1088/1748-9326/aba927
https://iopscience.iop.org/article/10.1088/1748-9326/aba927
https://iopscience.iop.org/article/10.1088/1748-9326/aba927
https://iopscience.iop.org/article/10.1088/1748-9326/aba927
https://iopscience.iop.org/article/10.1088/1748-9326/ac1b5c
https://iopscience.iop.org/article/10.1088/1748-9326/ac1b5c
https://iopscience.iop.org/article/10.1088/1748-9326/ac1b5c
https://iopscience.iop.org/article/10.1088/1748-9326/ac1b5c
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstNN7mY6i6hNwUmNIcC3fpHPUJUMnrXKuuJtIdNFS4cWTG741OCtjpWeWe_-a62pqHGMP7N0psvq7-zWjOMS1RC0AWW48Gfkos4BfesZ__EWC4s9vnWiK1-HufUmG1YYO9634d63fZu7JNKaXxhkcn84CxTPKyaX-V_fxH7G3xsIYMqcxKkweB81aswe5gzrLD6aosGRI9O7oercuXOJ3cqQuB6A-m4_gqCC2hh9x_ovu_5pNYK6A37N8OvPGc0d1YNNymsiNVfdvSsxvTy01fWhYif8JemT5-r_CtDuQU&sai=AMfl-YS5_ThjUe5TEZTSQcV7VmgA8sgUx8RkCe6b8AZGwyJxwA3i-9pzH7Ww8wgBq9f0kBTI2PQ6lToRV9qZgWY&sig=Cg0ArKJSzDQXCEXNH3DT&fbs_aeid=[gw_fbsaeid]&adurl=https://www.electrochem.org/upcoming-meetings/


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

13th International Conference on Civil and Architecture Engineering (ICCAE-13)
IOP Conf. Series: Materials Science and Engineering 974 (2020) 012001

IOP Publishing
doi:10.1088/1757-899X/974/1/012001

1

Military Technical 
College 

Kobry El-Kobbah, 
Cairo, Egypt

13th International 
Conference on Civil and 

Architecture Engineering 
ICCAE-13-2020 

Comparison of gridded datasets for the simulation of streamflow in 
Africa

Mostafa Tarek1,2, François P. Brissette1 and Richard Arsenault1

1 École de technologie supérieure, Université du Québec, 1100 Notre-Dame West, Montréal, Québec, 

Canada, H3C 1K3
2    Department of Civil Engineering, Military Technical College, Egypt.

Correspondence to: Mostafa Tarek (mostafa_tarek45@mtc.edu.eg)

Abstract. In recent decades, many parts of the African continent have experienced high precipitation 
variability with periodic drought and flood events. However, the network of streamflow gauges is too 
sparse in most countries to adequately capture these variations. In addition, no observed reference 
climatological dataset exists to adequately represent precipitation and temperature changes within all 
topographic and climatic zones. Consequently, the use of global gridded datasets needs to be 
considered. This paper aims to use the different available gridded datasets as inputs to a hydrological 
model to evaluate dataset performance. Nine precipitation and two temperature gridded datasets are 
used to this effect. The precipitation datasets include two gauged-only products, two satellite products 
corrected using ground-based observations, four reanalysis products and one merged product of gauge, 
satellite, and reanalysis.The two temperature datasets include one gauged-only and one reanalysis 
product. The ten precipitation and two temperature datasets were combined in their 18 possible 
arrangements for analysis purposes. Each combination was used to force the HMETS lumped 
hydrological model. The model parameters were calibrated individually for each combination against 
the streamflow records of 850 African catchments. The Kling-Gupta Efficiency (KGE) was used to 
evaluate the simulation performance. Results show thatboth temperature datasets performed equally 
well. Large differences were however observed between precipitation datasets. The MSWEP merged-
product was the best-performing precipitation dataset, followed by CHIRPS satellites and ERA5
reanalysis products, respectively. The performance of both gauged-only datasets (CPC and GPCC) 
was inferior, outlining the limitations of extrapolating information in data-sparse regions.

Keywords:precipitation datasets, gridded datasets, reanalysis products, streamflow simulation,
hydrological modeling, African catchments.

1. Introduction
Ground meteorological stations are consideredthe most accurate source of climate data, as they offer physical 
record of data in a specified area. However, stations may suffer from many limitations such as missing 
measurements or short temporal coverage[1]. In recent decades, many regions have experienced high 
variability in precipitation with periodic drought and flood events[2-5]. However, the spatial coverage of 
station networks is not sufficient to adequately represent these changes within all topographic and climatic 
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zones [4]. In addition, a gradual but steady decrease in the number of weather stations with long record listed 
in the Global Historical Climatology Network (GHCN) has started in the early 1990. To resolveall these 
problems, a large effort has been put into producing global gridded meteorological datasets. Such datasets 
providecontinuous spatial and temporal coverage and, typically, with no missing data. 

Over recent decades, several precipitation products have been producedwith different spatial and temporal 
characteristics. These datasets differ in terms of data sources (gauge, radar, satellite, reanalysis or 
combinations thereof), spatial resolution (0.05° to 2.5°), spatial coverage (continental to global), temporal 
scale (30 minutes to annual) and temporal coverage (from 1 to several years).Several studies addressed the 
importance of evaluating these datasets to stand on their advantages and limitations. Most studies quantified 
the accuracy of these products through a direct comparison against data from weather stations[6-11], while 
others assessed the performance indirectly using a hydrological model to compare against observed 
streamflow[12-16].

2. Study Area
In this study, the African continent was chosen as the main research area. Africa is considered the second 
largest continent with an area of 30.3 million km2 covering about 20% of the global land area[17]. Africa is 
considered to be the hottest continent on Earth. The northern half is mostly covered bydrylands and desert, 
while the central and southern parts contain savanna and rainforests [18]. Based on the combination of 
temperature, precipitation and evapotranspiration, Africa canbe divided into four main climatic zones; 1) arid 
and semi-arid, 2) tropical, 3) equatorial, and 4) temperate [19].

3. Data and Methods

3.1 Data
For many African regions, observed meteorological data are not easily available, either due to the lack of 
weather stations or the high fees to access the data. Most studies in Africa therefore depend on using satellite-
derived data as a reference dataset [20-23]. Hence, this paper aims to evaluate the performance of other 
several types of gridded datasets over a large set of hydrologically heterogeneous watersheds.  The dataset 
performance is assessed through their ability as generating accurate streamflow through the use ofa
hydrological model.

3.1.1 Precipitation gridded datasets
Gridded datasets can be classified as a function of their data source. Gauge-basedgridded datasets are 
obtained by interpolating the information measured ata small scale(typically a point measurement at a 
weather station) and mapped ontoa predefined spatial and temporal resolutions grid. However, variation in 
gauge types or instrument replacements affect error characteristics on the long-term records. In addition, 
observations areaffected by systematic biases from evaporation and wind effect or due to, for example, 
elevation placement of gauges in mountainous regions[24].

A different approach to measure precipitation is using ground weather radars, as it partially addresses the 
issue of rain gauge coverage. Moreover, it provides much larger spatial coverage to measure precipitation 
than the point measurements provided by gauges. However, radar coverage is limited to developed regions
that have a high population. In addition, they sense the real rainfall rate at a certain observational level above 
ground. Therefore,the presence of weather stations is required for the calibration and correction
processes[25].

Nowadays, satellite products are available at the global scale and can cover large areas athigh spatial and 
temporal resolutions and near real time coverage. They are mainly suitable for rainfall estimation in the 
tropics and data sparse regions. However, satellites are relatively insensitive and generally miss a significant 
quantity of light precipitation and tend to fail over snow and ice-covered surfaces [26]. Some studies 
evaluated the uncertainties of these datasets and showed that high resolution satellite products perform better 
when bias correctedusing gauge observations [27, 28].
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Retrospective-analysis / reanalysis systems are vital sources of data in weather and climate studies. A 
typical reanalysis system consists of two main components, the forecast model and the data assimilation
system. The role of the data assimilation system is to integrateobserved databases of many sources of 
observations with the numerical weather forecast models to produce consistent gridded datasets [29].
Although reanalysis are not 

Table 1.The selected global gridded datasets

Short name Data
Source

Spatial
Resolution

Spatial
Coverage

Temporal
Resolution

Temporal
Coverage

1- Precipitation datasets

1 CPC Unified Gauge 0.50° Global Daily 1979 - Present

2 GPCC Gauge 1.0° Global Daily 1979 - 2016

3 PERSIANN-CDR Gauge, Satellite 0.25° 60°N - 60°S 6 hours 1983 - 2012

4 CHIRPS Gauge, Satellite 0.05° 50°N - 50°S Daily 1981 - Present

5 NCEP-CFSR Reanalysis 0. 50° Global 6 hours 1979 – 2010

6 ERA-Interim Reanalysis 0.75° Global 3 hours 1979 – 8/2019

7 ERA5 Reanalysis 0.25° Global hourly 1979 – 2017

8 JRA-55 Reanalysis 0.5625° Global 3 hours 1959 - Present

9 MSWEP V1.0
Gauge, Satellite, 

Reanalysis
0.25° Global 3 hours 1979 - 2015

2- Temperature datasets

1 CPC Unified Gauge 0.50° Global Daily 1979 - Present

2 ERA5 Reanalysis 32 Km. Global hourly 1979 - 2017

direct observations, they provide analyzed variables in areas where stations are minimal [30]. Overall, no 
single precipitation product could be considered ideal for measuring precipitation. In fact, all precipitation 
products tend to miss a significant volume of rainfall [12].

As discussed earlier, there is now a rather large number of gridded datasets from stations, satellites, 
reanalysis or a combination thereof. However, not all those datasets can be used for climate change impact 
studies. Appropriate datasets would have the following desirable characteristics: 1) spatial resolution 
(between 0.05° to 1°); 2) daily scale or finer temporal resolution, 3) long temporal coverage (~ 30 years), and 
4) all datasets should cover approximately the same time interval. Based on those criteria, ten precipitation 
and two temperature gridded datasets were chosen in this study as shown in ‘table 1’. The precipitation 
datasets include two gauged-only products (GPCC and CPC),two satellite products corrected using ground-
based observations (CHIRPS and PERSIANN), four reanalysis products (JRA55, NCEP-CFSR, ERA-Interim 
and ERA5) and one merged product of gauge, satellite, and reanalysis (MSWEP).

3.1.2 Temperature gridded datasets
Land surface temperature is a key variable for meteorological monitoring and forecasting services [31]. It is 
also a key variable for climate and hydrological studies. In hydrological modelling, the air temperature is the 

 



13th International Conference on Civil and Architecture Engineering (ICCAE-13)
IOP Conf. Series: Materials Science and Engineering 974 (2020) 012001

IOP Publishing
doi:10.1088/1757-899X/974/1/012001

4

key driving variable for the evapotranspiration and snowmelt processes. Hence, accurate temperature data is 
a vital issue. However, the lack of adequate gauge network can result in improper estimates of temperature. 
Therefore, temperature gridded datasets are also crucial in many fields.Temperature products are generally 
thought to be less complex than precipitation datasets due to its much smaller spatial and temporal 
variability. Therefore, much fewer studies have compared and evaluated the uncertainty of using different 
temperature datasets. On this study, two temperature datasets have been included: the gauge-based CPC 
dataset, and the ERA5 reanalysis. 

3.1.3 Observed streamflow data
Streamflow records from the Global Runoff Data Centre (GRDC) were used to calibrate the hydrological 
models and evaluate the hydrological modelling performance. The GRDC database has streamflow data from 
1150 African stations. In this study, 850 stations were chosen based on two criteria. First, stations should 
havedata during the1983-2012 study period. Second, stations that have less than three years of consecutive 
data during this period were excluded. The spatial distribution of these stations is shown in ‘figure 1’.
 

 

Figure 1.Spatial distribution of the African 850 streamflow stations
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3.2 Hydrological model
In this study, the useof a distributed model was discarded due the scale of the study.  The lumped 
hydrological modelHMETS[32]was used to evaluate the performance of the various climate datasets. This 
modelhas shown an overall good performance in a wide range of climates and hydrological studies[32-
34].The model requires daily precipitation, temperature and potential evapotranspiration (PET) as inputs. The 
Oudin’stemperature-based formula [35] was used to calculate PET as it has shown an overall good 
performance and robustness on large-scale hydrological studies[36].

3.3 Hydrological model calibration
As will be detailed in the following section, the nineprecipitation and two temperature datasets were 
combined in their 18 possible arrangements for analysis purposes and the hydrological model parameters 
were calibrated for each catchment and each dataset combination.The15300 calibrations to be performed (9
precipitation datasets x 2 temperature datasets x 850 catchments) required the application of an automatic 
model parameter calibration method. For this study, the CMAES algorithm was applied because of its 
flexibility[37]. Moreover, it is considered as one of the best auto-calibration algorithms for hydrological 
modelling [38].

The Kling-Gupta Efficiency (KGE) calibration objective function was used to evaluate the simulation 
performance. KGE is a modified version of the Nash-Sutcliffe Efficiency (NSE) metric that was introduced
by Gupta[39]and modified by Kling[40]. It is defined as a combination of three elements;correlation, bias 
and variability as shown in ‘equation 1’.Pearson’s correlation coefficient used to represent the correlation 
component (r), the ratio of estimated and observed me���������	
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1

2	 (1)

The theoretical value for KGE to be equal 1 means that there is a perfect fit between the observed and 
simulated flows. Generally, KGE values above 0.6 are considered good.

4. Results and discussion

4.1 Analysis of precipitation and temperature
‘Figure 2’ presents mean annual temperature over the 1983-2012 period for the two selected temperature 
datasets.  Figure  

Figure2.Mean annual temperature for the two datasets and the bias between them

Both datasets display the same temporal patterns. ERA5 is however significantly warmer than CPC with a 
typical warm bias of 5-6 degrees over most of Africa. This difference is very large and canpotentially affect 
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evapotranspiration.However, the specific calibration of the hydrological model to each dataset has the 
potential to take this into account.   

To better present the differences between the datasets, the bias in the mean annual precipitation was 
calculated between each individual dataset and the average of all datasets. Results are shown in ‘Figure 3’.
The average here is considered as the reference bench mark. Since all the gridded datasets have different 
spatial resolution, the datasets were first interpolated to the finest grid scale. A red color indicates that the 
dataset is wetter than the average, while the blue color indicates it is dryer.Results show important 
differencesbetween the different precipitation datasets. All the datasets are generally similar in the desert and 
semi-desert regions butlarge differences are obvious in the tropical western and central regions. 

Overall, the reanalysis (middle row) are wetter over the intertropical zone, with ERA5 being much closer 
than the other three considered reanalysis. The CPC gauge-based dataset is much drier than all other datasets. 
The large differences between both gauge-based datasets (CPC and GPCC) outline the complexity of 
interpolating in data-spare regions. Differences between the other datasets are comparatively smaller. In the 
absence of any reliable reference datasets, it is difficult to interpret the differences observed here. While an 
outlier dataset (e.g. CPC) may lead to suspicion, the limitations associated with each dataset does not allow 
for any firm conclusion.  This is why hydrological modeling is used as an indirect validation method in this 
study. Even though streamflow gauges records do contain errors[41], in the context of this study, they are 
considered as the most reliable source for validation of the precipitation and temperature datasets.   

 

Figure3.Mean annual precipitation for the average of the all datasets (top left) and the bias from the average
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4.2 Hydrological model simulations
This section presentsthe results obtained from the hydrological modelling simulations.‘figure4’ shows the 
distribution of KGE scores for each of the 18 combinations of precipitation (9 sets) and temperature (2 sets). 
Each boxplot in ‘figure 4’ contains the KGE scores of all of the catchments in this study.

Figure4.KGE boxplots for nine precipitation and two temperature datasets

Many conclusions can be drawn from ‘figure 4’. Both temperature datasetsperform very similarly across 
all precipitation datasets, although ERA5 gives very small but consistently better results. Most of the 
differences observed in ‘figure 4’ therefore originate from the precipitation datasets. 

All precipitation datasets result in acceptable KGE median value larger than 0.5, showing they can all be 
used for hydrological modeling.   There are however large differences with some datasets clearly 
outperforming others. The CPC and GPCC gauge-based datasets are outperformed by fivedatasets. The 
MSWEP merged-product isquite clearly the best-performing precipitation dataset, followed by
theCHIRPSsatelliteand theERA-5 reanalysis datasets. The ERA-I, CFSR and JRA reanalysisare the least-
performing datasets in this study.  
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In order to study the impact of spatial variability, ‘figure 5’ present the spatial distribution of KGE values 
for all nine precipitation datasets used in conjunction with ERA5 temperature.

Figure5.Spatial distribution of Kling-Gupta efficiency metrics for nine precipitation datasets and ERA5 
temperature datasets

The spatial patterns are consistent for all precipitation datasets. Hydrological modelling performance is 
general quite good everywhere with the exception of South Africa. This could either be due to less reliable 
streamflow records in this region or more likely to the hydrological model difficulties in dealing with the arid 
climate of south Africa. Rainfall-runoff models have long been known to have difficulties in such climates 
[42].
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5. Conclusion
The main objective of this study was to evaluate the performance of nineprecipitation and twotemperature 
datasets to simulate streamflows of 850 African catchments over the 1983-2012period.The MSWEP merged-
product dataset was clearly the best performing one, followed by CHIRPS and ERA5 products, respectively.
The performance of both gauged-only datasets (CPC and GPCC) was inferior, outlining the limitations of 
extrapolating point-based measurement in data-sparse regions. Both temperature datasets performed 
similarly.  
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The CPC, GPCC and NCEP datasets can be downloaded from the Earth System Research Laboratory 
(ESRL), available here:https://www.esrl.noaa.gov/psd/data/gridded/tables/precipitation.html

ERA-Interim, ERA5 and JRA55 dataset are available on the Research Data Archive:
https://rda.ucar.edu/datasets/ds628.0/ 

The GRDC streamflow data can be downloaded from the Global Runoff Data Centre, available here:
https://www.bafg.de/GRDC/EN/Home/homepage_node.html;jsessionid=814972125050CA97A6F1CE67230E5CE6.liv
e21303.

MSWEP data are available through the PCA servers at: 
https://platform.princetonclimate.com/PCA_Platform/mswepRetro.html.

CHIRPS satellite dataset can be downloaded from the Climate Hazards Center:
https://www.chc.ucsb.edu/data/chirps

Finally, the HMETS hydrological model is available on the MATLAB File Exchange:
https://www.mathworks.com/matlabcentral/fileexchange/48069-hmets-hydrological-model. 
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